Editorial: Ethylene's Role in Plant Mineral Nutrition

نویسندگان

  • Francisco J. Romera
  • Aaron P. Smith
  • Rafael Pérez-Vicente
چکیده

Ethylene is a gaseous plant hormone involved in many aspects of plant life, including seed germination, flower senescence, abscission, and fruit ripening (Abeles et al., 1992). It also plays a very important role in the responses of plants to both biotic and abiotic stresses (Abeles et al. The production of ethylene is tightly regulated by internal signals, and usually increases in response to biotic (e.g., pathogen attack) and abiotic stresses, such as mechanical stress, hypoxia, chilling, and nutritional disorders (Abeles et al. In processes related to mineral nutrition, ethylene has been implicated in the regulation of physiological and morphological responses to nutrient deficiencies; in nodulation of legume plants; in salt tolerance responses; and in responses to heavy metals (Abeles et al. This research topic updates recent results relating ethylene to different aspects of plant mineral nutrition. It includes 10 reviews and 2 original articles: 7 reviews are related to nutrient deficiencies 1 to nodulation (Guinel), 1 to salt tolerance (Tao et al.), and 1 to heavy metals (Keunen et al.); 1 original article is related to Fe (iron) deficiency (Ye et al.), and the other one to N (nitrogen) deficiency (De Gernier et al.). The role of ethylene in the regulation of responses to nutrient deficiencies was introduced in the nineties, when some studies showed an implication of ethylene in the regulation of physiological and/or morphological responses to Fe and P (phosphorus) deficiency (Romera and Alcántara, 1994; Lynch and Brown, 1997). In the last years, the role of ethylene has been extended to other nutrient deficiencies, such as K (potassium) deficiency, S (sulfur) deficiency, and others (Iqbal et al., 2013; García et al., 2015). The relationship between ethylene and other processes related to mineral nutrition (nodulation, salinity and heavy metals) has also been known for many years (Abeles et al., 1992; Lynch and Brown, 1997). Since nutrient deficiencies cause stress to plants and stress promotes ethylene synthesis (Abeles et al., 1992), most plant species increase ethylene production under different deficiencies (Lucena et al.; Schachtman; Song and Liu; Wawrzynska et al.). This higher ethylene production is generally associated with increased transcript abundance for genes involved in ethylene biosynthesis and signaling (Lucena et al.; Schachtman; Song and Liu; Wawrzynska et al.; Neumann). Moreover, the mitogen-activated protein kinases 3 and 6 (MPK3/MPK6), that can regulate ethylene production, increase under Fe deficiency (Ye et al.) or under heavy metal stress (Keunen et al.). In …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mineral nutrient remobilization during corolla senescence in ethylene-sensitive and -insensitive flowers

The flower has a finite lifespan that is controlled largely by its role in sexual reproduction. Once the flower has been pollinated or is no longer receptive to pollination, the petals are programmed to senesce. A majority of the genes that are up-regulated during petal senescence, in both ethylene-sensitive and -insensitive flowers, encode proteins involved in the degradation of nucleic acids,...

متن کامل

Influence of mineral and organic fertilizers on yield and nitrogen efficiency of winter wheat

The aim of this study was to evaluate the long-term (16-years) nitrogenefficiency after the application of organic and mineral fertilizers at two sitesLukavec (S1) and Suchdol (S2) with different soil and climatic conditions in theCzech Republic (Central Europe) and to determine grain yield and nitrogen contentwith regard to the requirements of protein content for baking quality of wheat.After ...

متن کامل

The Role of Soil Microorganisms in Plant Mineral Nutrition—Current Knowledge and Future Directions

In their natural environment, plants are part of a rich ecosystem including numerous and diverse microorganisms in the soil. It has been long recognized that some of these microbes, such as mycorrhizal fungi or nitrogen fixing symbiotic bacteria, play important roles in plant performance by improving mineral nutrition. However, the full range of microbes associated with plants and their potenti...

متن کامل

OVERVIEW: PART OF A SPECIAL ISSUE ON PLANT NUTRITION Plant nutrition for sustainable development and global health

†Background Plants require at least 14 mineral elements for their nutrition. These include the macronutrients nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg) and sulphur (S) and the micronutrients chlorine (Cl), boron (B), iron (Fe), manganese (Mn), copper (Cu), zinc (Zn), nickel (Ni) and molybdenum (Mo). These are generally obtained from the soil. Crop production is o...

متن کامل

Rapid induction of regulatory and transporter genes in response to phosphorus, potassium, and iron deficiencies in tomato roots. Evidence for cross talk and root/rhizosphere-mediated signals.

Mineral nutrient deficiencies constitute major limitations for plant growth on agricultural soils around the world. To identify genes that possibly play roles in plant mineral nutrition, we recently generated a high-density array consisting of 1,280 genes from tomato (Lycopersicon esculentum) roots for expression profiling in nitrogen (N) nutrition. In the current study, we used the same array ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016